Paths To Knowledge (dot Science)

What is actually real in Objective Reality? How do you know? Now, prove it's real!

Real Benefits Of An Enriched CO2 Atmosphere

Posted by pwl on February 20, 2011

The benefits of carbon dioxide supplementation on plant growth and production within the greenhouse environment have been well understood for many years. Carbon Dioxide (CO2) is an essential component of Carbon Based Life on Earth.

There would be NO GREEN without the ESSENTIAL NUTRIENT CO2. MORE CO2 = MORE PLANTS. Inconvenient FACTS of PLANT BIOLOGY. More CO2 = More Plants = Cleaner Air. More CO2 = Plants = More Food For Humans. More CO2 = A Good Thing.

“The benefits of carbon dioxide supplementation on plant growth and production within the greenhouse environment have been well understood for many years.

Carbon dioxide (CO2) is an essential component of photosynthesis (also called carbon assimilation). Photosynthesis is a chemical process that uses light energy to convert CO2 and water into sugars in green plants. These sugars are then used for growth within the plant, through respiration. The difference between the rate of photosynthesis and the rate of respiration is the basis for dry-matter accumulation (growth) in the plant. In greenhouse production the aim of all growers is to increase dry-matter content and economically optimize crop yield. CO2 increases productivity through improved plant growth and vigour. Some ways in which productivity is increased by CO2 include earlier flowering, higher fruit yields, reduced bud abortion in roses, improved stem strength and flower size. Growers should regard CO2 as a nutrient.

For the majority of greenhouse crops, net photosynthesis increases as CO2 levels increase from 340–1,000 ppm (parts per million). Most crops show that for any given level of photosynthetically active radiation (PAR), increasing the CO2 level to 1,000 ppm will increase the photosynthesis by about 50% over ambient CO2 levels. For some crops the economics may not warrant supplementing to 1,000 ppm CO2 at low light levels. For others such as tulips, and Easter lilies, no response has been observed.

Carbon dioxide enters into the plant through the stomatal openings by the process of diffusion. Stomata are specialized cells located mainly on the underside of the leaves in the epidermal layer. The cells open and close allowing gas exchange to occur. The concentration of CO2 outside the leaf strongly influences the rate of CO2 uptake by the plant. The higher the CO2 concentration outside the leaf, the greater the uptake of CO2 by the plant. Light levels, leaf and ambient air temperatures, relative humidity, water stress and the CO2 and oxygen (O2) concentration in the air and the leaf, are many of the key factors that determine the opening and closing of the stomata.

Ambient CO2 level in outside air is about 340 [391] ppm by volume. All plants grow well at this level but as CO2 levels are raised by 1,000 ppm photosynthesis increases proportionately resulting in more sugars and carbohydrates available for plant growth. Any actively growing crop in a tightly clad greenhouse with little or no ventilation can readily reduce the CO2 level during the day to as low as 200 ppm. The decrease in photosynthesis when CO2 level drops from 340 ppm to 200 ppm is similar to the increase when the CO2 levels are raised from 340 to about 1,300 ppm (Figure 1). As a rule of thumb, a drop in carbon dioxide levels below ambient has a stronger effect than supplementation above ambient.

During particular times of the year in new greenhouses, and especially in double-glazed structures that have reduced air exchange rates, the carbon dioxide levels can easily drop below 340 ppm which has a significant negative effect on the crop. Ventilation during the day can raise the CO2 levels closer to ambient but never back to ambient levels of 340 ppm. Supplementation of CO2 is seen as the only method to overcome this deficiency and increasing the level above 340 ppm is beneficial for most crops. The level to which the CO2 concentration should be raised depends on the crop, light intensity, temperature, ventilation, stage of the crop growth and the economics of the crop. For most crops the saturation point will be reached at about 1,000–1,300 ppm under ideal circumstances. A lower level (800–1,000 ppm) is recommended for raising seedlings (tomatoes, cucumbers and peppers) as well as for lettuce production. Even lower levels (500–800 ppm) are recommended for African violets and some Gerbera varieties. Increased CO2 levels will shorten the growing period (5%–10%), improve crop quality and yield, as well as, increase leaf size and leaf thickness. The increase in yield of tomato, cucumber and pepper crops is a result of increased numbers and faster flowering per plant.

Rates of carbon dioxide supplementation are dependent on the crop response and economics. Flower and vegetable growers may take somewhat different approaches. In general, carbon dioxide supplementation of 1,000 ppm during the day when vents are closed is recommended.”

Commercial Carbon Dioxide Greenhouses.


One Response to “Real Benefits Of An Enriched CO2 Atmosphere”

  1. I always spent my half an hour to read this webpage’s articles all the time along with
    a mug of coffee.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: